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LARGE PLASTIC DEFORMATIONS
OF REINFORCED CONCRETE SLABS

M. JANAS*

Polish Academy of Sciences, Warsaw, Poland

Abstract—Plastic response of reinforced concrete slabs is analyzed, including membrane effects and geometry
changes at large deflections. Based on the flow theory of rigid-plastic bodies, load—deflection relations are derived,
starting from the initial compression (*‘arching action™) in laterally restrained slabs, up to the overall membrane
tension and cracking. The kinematical approach is applied, using energy or/and equilibrium methods, with the
initial collapse mode assumed to be preserved at large deflections. Examples of clamped strip, square and circular
slabs are presented, and the comparison with the approach based on the deformation theory is discussed.

1. INTRODUCTION

THE theory of limit analysis employs the model of rigid—perfectly plastic body, and thus
cannot account for deformations prior to collapse. For real structures, however, these
deformations may sometimes be large enough to influence the equilibrium equations,
and to change the load intensity at which the unrestrained plastic flow commences. The
influence of changes in geometry can, however, be studied within the framework of the
rigid—plastic theory as ‘“‘the post-yield behavior”. One then obtains a sequence of load
intensities at which the instantaneous plastic motion of the sequence of deformed struc-
tures occurs. The work-hardening being neglected, the load—deflection relations thus are
influenced only by the changes in geometry due to plastic deformations. This sort of
influence (“‘secondary effects”) has been studied by Onat [1], and certain problems of
post-yield behavior of metal rod systems have been solved [2—4]. Existing complete
solutions for axially symmetric metal plates are due to Hodge [5] and Lepik [6], and the
approximate approach assuming continuation of the initial collapse mode at large deflec-
tions has been used in [7, 8].

For reinforced concrete slabs the kinematical approach using the above assumption
has been applied by Wood to circular plates [9], whereas Sawczuk [10, 11] and Park [12]
treated rectangular plates. For very large deflections, pure membrane analysis has been
employed (cf. [13, 14]).

It must be pointed out that the term ‘“‘secondary effects” (cf. [1]) is misleading when
applied to reinforced concrete structures, since in this case small changes in geometry
can be of considerable importance. This is due to “‘the arching action” neglected in both
elastic and plastic theories of plates. As first observed by Gvozdev [15], and later discussed
by Drucker [16], as well as verified in numerous tests (e.g. [9, 12]), this action can con-
siderably strengthen concrete structures. The arching action is, however, unstable, thus
considerations based on the undeformed geometry can lead to erroneous results. For metal
plates, the load—-deflection curves always keep increasing [6], but for reinforced concrete
plates they may decrease appreciably (see Fig. 1).

* At present at: Faculté Polytechnique de Mons, Belgium.
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Fi1G. 1. Load-deflection relations for laterally restrained reinforced concrete slabs.

2. KINEMATICAL APPROACH FOR DEFORMED SLABS

The post-yield behavior of reinforced concrete slabs will be analyzed with the following
assumptions:

(i) The materials are rigid—perfectly plastic,

(i) One is interested in approximate solutions based upon the upper-bound theorem
of the limit analysis theory,

(iii) The collapse modes adopted do not change with the deformation, i.e. the deflection
changes are proportional to one parameter,

(iv) The initial collapse modes are chosen among the yield-line collapse mechanisms.

The upper-bound theorem is valid for structures undergoing negligible changes in
geometry prior to the collapse. If it is used in the analysis at large deflections, the routine
energy technique has to be applied to the current deformed configuration. Thus, at each
stage of the deformation process, the associated kinematic solution can be found and the
upper bound for the load—-deflection relation can be established. Unfortunately, the real
configuration of the deformed system should be known a priori at each instant con-
sidered. This requirement can rarely be satisfied. Nevertheless, the discussed method is
valid in all cases, provided the components of the work equation depend solely upon the
deflection at a fixed point. This situation arises, for example, if the yield-line collapse
mode assumed is initially exact, and then, due to translation or expansion of plastic hinges,
the deformed zones develop into conical surfaces. In a general case, it is not certain that
the kinematical approach really gives an upper bound for the load—deflection relation.
However, if the considered collapse mode is reasonably close to the real one, errors should
not be excessive.

The assumptions stated at the beginning of this section have already been applied in
some papers cited in Section 1. However, all the papers dealing with reinforced concrete
slabs [9-12] are actually based upon the deformation theory, even if they are written
within the framework of the theory of plastic flow.

The difference between the applications of both theories can be easily demonstrated by
examining the deformed beam as shown in Fig. 2. For small but finite rotations x = wy:a,
the position of the undeformed (neutral) layer O, is determined by z, = 0-5w, (see [9]).
The deformation theory relates stresses to strains, and thus at the point O, the yield stress
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changes sign. However, since the displacements are governed by the rule of rigid-body-
motion, the neutral axis for strain rates must coincide with the axis O, of instantaneous
rotation. The principle of vector summation specifies the rotation rate at the hinge, and
the axis O; must therefore lie on the straight line AB, its co-ordinate being z; = w,. For
the flow theory the signs of strain rates and those of stresses must agree, and hence the
zone O,C is in tension. The deformation theory would give there compressive stresses.
The rate of energy dissipation is therefore different in the two theories and kinematical
approaches based upon them must give different results.

Fi1G. 2. Yield hinge at large deflections.

Both theories coincide only if deformations vary proportionally in the whole structure.
Approximations obtained from the deformation theory can be satisfactory also if the
deformation process does not differ strongly from proportionality. Unfortunately, this
situation does not occur for slabs, since, as can be seen in Fig. 2, the initially compressed
layers become successively stretched during the deformation process. Only for the incipient
flow of undeformed structures and at a considerably advanced flow (with both the axes
0, and O, falling out of the cross-section) will both theories give identical results.

One objection can be raised against adopting the flow theory. The concrete is assumed
to be a stable plastic material with the yield point in tension g, — 0. Thus, the cracked
zone is to be considered as undergoing plastic tensile deformations and, whenever the
sign of the strain rate changes, the compressive yield stress must appear. However, the
compressive strength of the cracked concrete is very small (theoretically equal to zero),
until the cracks are closed. Therefore, when cracked zones can possibly turn back to com-
pression the applicability of the flow theory becomes questionable and use of the deforma-
tion theory could be considered. However, in the absence of reversed loads, and at collapse
modes excluding upward deflections, strain rates decrease monotonically and no change
from tensile strains to compressive strains is possible.

3. DISSIPATION OF ENERGY IN A PLASTIC HINGE

If a yield-line collapse mode is assumed, no strains but those normal to the cross-section
of a plastic hinge can exist, and the only generalized stress resultants are the bending moment
M and the axial force N. The rate of energy dissipation dD for an elementary length dt of
a yield line is then:

dD = #(M +z4,N)dt, (1)

where % denotes the curvature rate, and z, stands for the co-ordinate of the neutral axis
of strain rates (the axis of instantaneous reciprocal rotation, Fig. 3(a)). The stress resultants
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in the plastic hinge of an arbitrary nonhomogeneous or layered cross-section (Fig. 3b) are:

hy 0 hy 20
M =J' z6(2) dz—f za (z)dz, N = —f o(z) dz+j olz)dz. 2)

hy —hy

=0

where 0,(2), 6,(z) are the yield stresses in compression and tension, respectively.

F1G. 3. Strain rate and stress distribution within a plastic hinge ; (a) strain rates, (b) yield stresses within
an arbitrary non-homogeneous cross-section, (c) reinforced concrete cross-section.

For transversely loaded horizontal slabs, vertical positions of the rotation axes z,; do
not influence the work of external loads. Hence, the positions corresponding to the least
upper bound to the collapse load must furnish the minimum rate of the total energy dissi-
pation D in the structure, and thus they must be determined from the condition:

oD —0
0zq;

3)

Since the elementary dissipation dD is non-negative, the absolute minimum of D will

be furnished by the values of z, found from the equation:
adD)
0z, -

0. )

Introducing equations (1) and (2) into (4), one finds that the latter is equivalent to the
assumption of pure bending in plastic hinges (N = 0). The least collapse load should then
correspond to zero axial forces all over the yield lines. Such a condition is a priori satisfied
in the yield-line theory (pure bending theory), and Johansen’s theory [17] always gives the
least upper-bound collapse load possible for the assumed yield-line pattern.

Kinematical restraints, disregarded in the bending theory, rarely permit to satisfy
equation (4) all over the slab, even at incipient plastic flow. On the other hand, it is possible
to satisfy equation (4) for metal slabs, since the neutral axes for negative and positive pure
bending coincide, and the condition N = 0 does not contradict kinematical restraints.
For reinforced concrete this is impossible, except for the laterally unrestrained slabs; in
other cases axial forces (arching action) must be taken into consideration.

For deformed slabs, the position of the neutral axis depends on displacements (Fig. 2)
and therefore it may be impossible to have simultaneously N = 0 along all plastic hinges.
Indeed, upper-bound solutions give in general collapse loads considerably larger than the
results from Johansen’s theory (see Sections 5 and 6). Only for strips and beams (Section 4)
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can the condition (4) be satisfied for a fixed value of the deflection, and then the minimum
value of the load—deflection curve (Fig. 1) coincides with the result supplied by the pure
bending theory.

To particularize formula (1) for the case of a reinforced concrete cross-section
(Fig. 3c), values o (z) = 0., 6,(z) = 0 for concrete and ¢.(z) = 6,(z) = o, for steel reinforce-
ment have to be introduced into equation (2). Using non-dimensional co-ordinates of the
neutral axis £ = 2z,:h and of the ith layer of reinforcement (with the area of steel cross-
section Ay) &; = 2z;:h, we can express the elementary rate of energy dissipation as:

1+ &2
2

dD = %M, +&sgnr+2n|¢—¢|) dt for|¢| <1 (5)

dD = [#|Mq( & + ¢ sgn %+ 2 — ¢y de for | > 1 (6)

where M, denotes double ultimate bending strength for a unreinforced cross-section,
and #; is the reinforcement intensity of the ith layer, namely :

o h?

o A,;
M — , — § St
07 4

0]

" o.h’

The summation convention applies to repeated subscripts in equations (5) and (6).

4. REINFORCED CONCRETE STRIP

The kinematical approach, based on the plastic flow theory (see Section 2), will be
applied to the case of a clamped slab strip of span L. Reinforcement of arbitrary intensity
is assumed to be distributed at the bottom (1, £, = 1) and top face (i,, &, = —1) of the
slab. At symmetrical loads the motion commences when plastic hinges form at the mid-
span and at the supports. If this mode is assumed to continue, the deflection increments
are due to rotation rates ¢ with respect to the instantaneous axes at supports O, (Fig. 4).

FIG. 4. Stress distribution in plastic hinges at large deflections.

Thus, the rate of work T of uniformly distributed load g and due to the virtual rotation
rate ¢ is:

both for the undeformed and deformed states.
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Neutral axes in plastic hinges of the deformed strip (Fig. 4) coincide with the axes of
reciprocal rotation rates. Hence the relations:

J%A=‘¢,6A=é; ;.‘B:z(p’éB:é—'za (9)

define the strain rates due to the virtual rotation rate ¢.

Introducing the adopted reinforcement characteristics, together with relations (9),
into (5) for both support and midspan hinges, we obtain the total rate of dissipation for
a unitary width of the strip:

D = 2D + Dy = Mop[(1 =&+ (1 + & —2a)* +8(n,+1,) + 8(n,— ) (@~ &) (10)

Since the external work does not depend on the position of rotation axis, the balance
equation T = D furnishes the least bound to collapse load, when the dissipation rate
attains a minimum, that is when:

1))
= 0. (11)
Condition (11) furnishes
¢ = a+20m—n,) (12)
and the work equation yields the collapse load :
g;zo = 40, +1)— 40, ~n)’ + (1 — ) (13)
The result (13) holds for £ < 1 and &z > —1, ie. for
o <oy =1-2n,—nl (14)

When this value is exceeded, formula (6) must be used instead of (5) for the support
or the midspan hinge, depending on the sign of the expression (n,—#,). The minimum

condition (11) is satisfied for £ = 1 or {5 = — 1, respectively, and the collapse load is:
gL’ 2
= 4, +n)+ 21 —0)* — 41 —a)(n, ~—1,)- (15)
8M,

For a more advanced deformation (¢ > o, = 1) the formula (6) must be applied to
all hinges, and ¢ turns out not to influence the work equation. The collapse load is then
expressed by the linear relation :

2

qL
8M,

= do(n, +1,). (16)
The collapse load is plotted versus central deflection in Fig. 5, for various configura-
tions of reinforcement. The minimum value of the collapse load :

qyL?

= M, +n,)—2(n,—n,)?, (17)

is obtained for « = oy = 1 —|n,—n,. It is equal to the collapse load supplied by the yield-
line theory, since (according to Section 3) the state « = a, corresponds to pure bending
(N = 0) in all hinges.
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FiG. 5. Load—deflection curves for clamped reinforced concrete strips: (a) symmetrically reinforced,
(b) singly reinforced, (c) unreinforced.

It is known that the energy method is equivalent to so called *“‘equilibrium method”
in the kinematical approach. In the equilibrium method the work equation corresponds
to the moment equilibrium, and the minimum condition (11) represents the equilibrium
of horizontal forces acting in the hinges. This method seems to be more illustrative, since
different collapse-load expressions can be associated with different plastic regimes met
by stress profiles at the interaction curve. For the cross-section considered (and y, > #,)
the interaction curve is shown in Fig. 6. For relatively small rotations ¢ = 2wg: L, the
axial forces can be assumed constant throughout the strip. Thus, the stress profile remains
vertical and it moves from the initial position 4,B, up to the state of maximum tensile
action. Since the structure considered is symmetric, the initial vertical locations of neutral
axes must be the same in the support and in the midspan hinges. Thus for both hinges
the plastic flow vectors (%, A = z,%) must be parallel. This requirement, together with
the normality condition, specifies the initial position of the stress profile 4B, .

M
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B — &
By {
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Fi1G. 6. Interaction curve for doubly reinforced concrete cross-section.
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All the load—deflection relations presented are valid also for loads other than uniformly
distributed, provided they produce the maximum moment at the midspan of the un-
deformed strip. Only the left sides of the formulae must be replaced by expressions
corresponding to the rate of work of the actually considered external load. There is, how-
ever, one difference. For a concentrated load applied at the midspan, the solution presented
is exact, i.e. the yield criterion is not violated in the rigid regions. For distributed loads
this condition is satisfied as long as the axial force remains compressive. For larger
deflections the plastic hinge moves out of the cross-section (see [4], for steel plates) and
the employed collapse mode furnishes only an upper bound to the limit load.

5. CIRCULAR CLAMPED SLAB

Consider a circular slab of radius R uniformly and doubly isotropically reinforced
(thus n, = 1, = n). The reinforcements are placed at the top (£, = —1) and at the bottom
(¢, = 1) faces. The initial conical collapse mode, of Fig. 8, is assumed to apply even as the
deflections increase.

F1G. 7. Radial section of deformed circular slab.

If the formulae (5), (6) for the dissipation rate are to be applied, a continuous strain
field must be considered as a yield-line pattern. The adjacent radial yield lines make then
the angle df. Thus, a virtual rotation rate about the axis O at the clamped edge (Fig. 7)
produces in the support hinge the following deformations:

*=—-0, =< (18)

For the conically deformed surface one obtains

ko= @db, = E{—2a(1—p). (19)

where p = r:R denotes a dimensionless radial co-ordinate, and a = w,:h stands for a
dimensionless central deflection. For a virtual rotation rate ¢, the elementary work of
the uniformly distributed load g is:

R3
T = %g) do. (20)
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Since the deformations vary along the radial hinges, the total dissipation rate for an
elementary segment df takes eventually the form:

_ 2 1 2
D= Moq'){(l 25’) +4n+f [(1 +2£") +4r1] dp}R de. 1)

0

After integrations, the minimum condition (11) applied to the expression (21) gives

¢ = 0-5a. The virtual work equation T = D yields the collapse load :
gR?
6M,

5
= 1+8y—a+ 50 (22)

The formula (22) is valid for &, < 1, &, = —1,ie. for a < a; = 2:3. For larger deflections
a membrane zone spreads from the centre and the formulae (6) and (5) must be applied
for 0 < p < py and p, < p < 1, respectively. The boundary radius p, is specified by the
condition £, = -1, which gives:

1+¢

P 23)

0:

Integrating the dissipation and employing the appropriate formulae for each zone,
one obtains

qR? 1+&? 3[1+¢ )2 (1+¢)°
= 5} 44 o Il
6M, 2(1 0 I A N B R T @4
whereas the minimum criterion (11) gives:
1+¢ 2
—5= = VI6n+a)* +2a(6n+ 1)] — (6n +a). (25)
Expression (25) is valid for ¢ < 1, i.e. for
1
a< oy = 1+E, (26)

but there is no need to establish new formulae for larger deflections. The minimum
principle (11) is identical to the condition of equilibrium for horizontal forces. Con-
sidering a slab segment with central angle § = =, we can see that, if ¢ > 1, the radial
forces in the support hinge cannot be balanced by the resultant of circumferential stresses
acting along the diameter. Thus, once the rotation axis attains the bottom face, it must
remain there for a > a,. Thus formula (24) is still valid. Introducing £ = 1 instead of
the value given by (25), we obtain:

2

RZ 2
q ]+§&. (27)

3
= 4n|2+>(1-
6M, "[+a( *

In Fig. 8, the collapse loads for reinforcement intensity n = 0-1 are plotted vs. the central
deflection. It can be seen, that the minimum load is considerably larger than

= 81, (28)
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FiG. 8. Load—deflection curve for symmetrically reinforced circular clamped slab.

as given by the yield-line theory. It is clear that the coincidence observed for the slab
strip cannot occur here.

6. SQUARE SLAB

Considerations concerning a circular plate can be directly applied to the case of a
square clamped slab. Assuming the diagonal collapse mode (Fig. 9) to be preserved at
large deflections, the rate of external work of the uniformly distributed load q is found
to be

qL®

As in the case of the deformed circular slab, strains vary along the diagonal hinges (see
Fig. 7), and the deformation rates are:

2
%s= =g, &=&  kp=42¢. &H=E-2a —-t—]j)- (30)

Subscripts S and D correspond to the support and to the diagonal yield lines, respectively,
and t is the coordinate measured from the slab centre along the diagonal hinge.

The slab is assumed to be reinforced only at its bottom face. Then, introducing the
reinforcement characteristics and the relations (30) into the dissipation formula (5), and
performing the integration, we obtain the total dissipation rate D. It reaches minimum
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for £ = 2n+0-5a. The work equation T = D now yields the collapse load :

gL> 1-a 5 ,
%2 ot —n).
asM, ~ 2 Tz tad-m (31)

The obtained formula is valid for £ < 1 and &, > —1, and it gives the following limita-
tions for the central deflection :

a < oy = 2(1—2n), o< oy =H1+2) (32)

Whenever a, < a < a,, the formula (6) ought to be applied when evaluating the dissipa-
tion in the boundary hinges. One can see, however, that the equilibrium of horizontal
thrusts acting on a triangular panel cannot be satisfied if £ > 1. Thus, £ = 1 must be
introduced in the original formula from which the expression (31) was derived, and
eventually we obtain

qL? a?

28M, =1—-all—n)+ 3 (33)

For the central deflection a > a3 = 1, the formula (6) must be applied in the inner zone
of diagonal hinges whenever

1
< —L—(l —=]. (34)
N1
Since the condition ¢ = 1 must still hold, we obtain:
qlL? 1
= — 5
M, M3y (33)

When the second of conditions (32) is more restrictive, (¢; > « > a,), a membrane zone
appears for

t< —\1+——

\/2 20

when & < 1. Then, applying the formula (5) to the support hinges and to the outer part
of diagonals, and the formula (6) to the inner part, we obtain a total dissipation rate which
attains a minimum for

L( 1+¢ (36)

E=odla+2(1+29))F —a—1. (37

When the minimum of D is introduced into the work equation, the load—deflection relation
becomes
qL? a?

— 2___._.2_ 4 k3
48M, =(1+0a) 3 3oz [o +2(1 +2m)]% +n(4 + S5a). (38)

When the deflection exceeds the value

Xy =7 (39)
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the neutral axis remains at the bottom face (£ = 1), and thus, the expression (35) is again

valid.
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Fi1G. 9. Load—deflection curve for square clamped symmetrically reinforced slab.

For reinforcement intensity # = 0-1, the collapse load is plotted in Fig. 9 vs. the central
deflection. Similarly to the case of a circular slab, the minimum load, though being con-
siderably smaller than the initial load, is larger than that provided by the yield-line theory:

‘IYLZ
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48M,
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o
/ £q:38 AN
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&=H
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F1G. 10. Square clamped slab; ranges of validity of solutions.

(40)

Regions of applicability of expressions (31-38) are shown in Fig. 10, where the dashed

line indicates the deflection values for which the minimum load is attained.
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7. FINAL REMARKS

The load—deflection curve for rigid plastic structures being decreasing (zone OA in
Fig. 1), for the reasons of safety the geometry changes prior to the initial plastic flow
should be taken into consideration. If they are not accounted for, the classical pure bending
theory [17] should be preferentially applied. For clamped or laterally restrained re-
inforced concrete slabs, this theory occurs to be kinematically non-admissible (see [18])
but it gives a safe approximation of the collapse load. On the other hand, the rigid—plastic
analysis, kinematically correct but based upon the initial geometry, can lead to a consider-
able overestimation of the real carrying capacity.

If the ultimate collapse load (the peak value) is desired, the analysis must account
for the elastic—plastic response. If it does not, it must be accompanied by experiments
specifying approximate values of deflections associated with the peak load [14]; other-
wise the minimum ordinate should stand for the ultimate collapse load.

Variations of a yield mechanism due to the changes in geometry, disregarded in the
paper, are of importance for metal plates. For reinforced concrete structures, however,
the yield mechanism is of a more stable character. In fact, the collapse mode maintains
its original form up to rather large deflections. This situation is due to the fact that mem-
brane forces are always tensile in metal slabs, whereas reinforced concrete structures are
compressed in the early stage of deformation. For example, the positive plastic hinge must
move out of the midspan cross-section of a uniformly loaded clamped metal strip, whereas
for a reinforced concrete structure the maximum moment conserves its initial position
until the membrane force becomes tensile.
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AGcTpakT—B paboTe NPHBOAMTCH MIACTHYSCKHI aHAIH3 Xele300eTOHHBIX [UTACTHHOK C YY€TOM BIIMAHUA
MeMOpaHHBIX YCHJIMM M M3MEHEHWM T€OMETPHHM KOHCTPYKLHM, BO3ZHMKAIOIMX npu Goneimmx mporubax.
Hcnionsys TeopMIO TEYEHMs KECTKO-, IIACTHYECKHX TeJ, IOJyYeHEl COOTHOUICHHS Mexay nporubom u
Harpy3xkoil B LEnoM npotecce AeGopMalMU: HAYMHAS OT OCEBOTO CKATHUA BO3HHMKAIOLLETO NPU HAIMYHMK
rOPU3OHTANBHbIX ONOPHBIX cBsidelt (3ddexT pacnopa), Ko MEMOPAHHOrO PACTsKEHHs M TpeLMHOOGpa3o-
BaHHA. Mcnon3yeTcd KMHEMATHUYECKMH IMOOXOA ¢ NPUMEHEHHEM 3HEPTETHYECKOrO METOAa WM MeTola
PABHOBECHS; CXeMa Pa3pYIUCHHA CYATAETCA HEM3MEHHMOM B Npolecce Harpyxenns. [TpUBoauTCS PUMeEpPHI
ana 6anoyHoit 3aLeMICHHON MNMTHI, 1UIsi KPYTJIBIX H KBAAPATHLIX TIACTHHOK M CPABHHBAETCS NPESIOKEH-
HBI METOA C aHAIM3OM HCION3YIOILHM AeGOPMANHOHHYIO TEOPHIO TIACTHYHOCTH.



